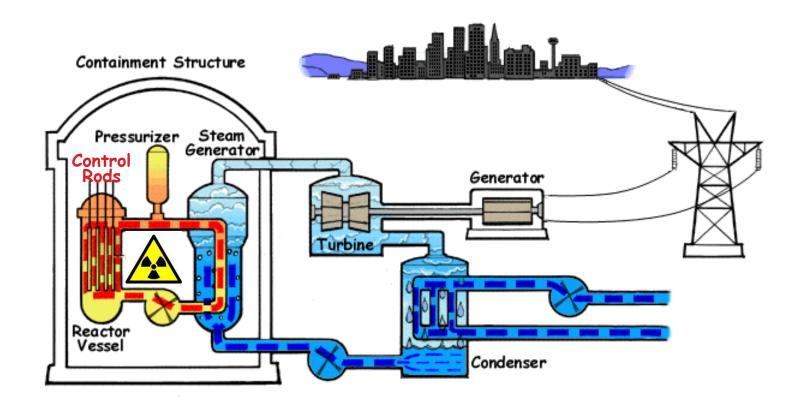
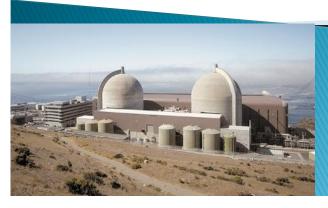

WHAT HAPPENED IN FUKUSHIMA A TECHNICAL PERSPECTIVE

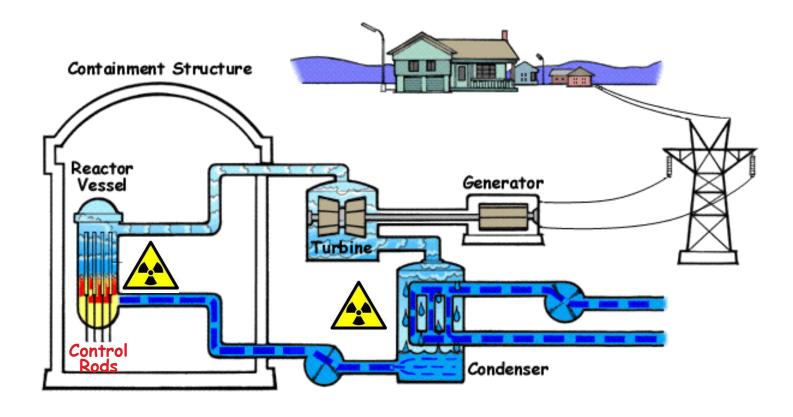
The Nuclear Accidents at the Mark 1
Boiling Water Reactors (BWR)
at Fukishima Daiichi Units 1 - 4
and Implications for American BWR

LBNL EETD noon Seminar - April 5, 2011


Christian Lobscheid, PE Senior Mechanical Engineer Advent Engineering Services, San Ramon, CA



Source: Japan Atomic Industrial Forum (JAIF)

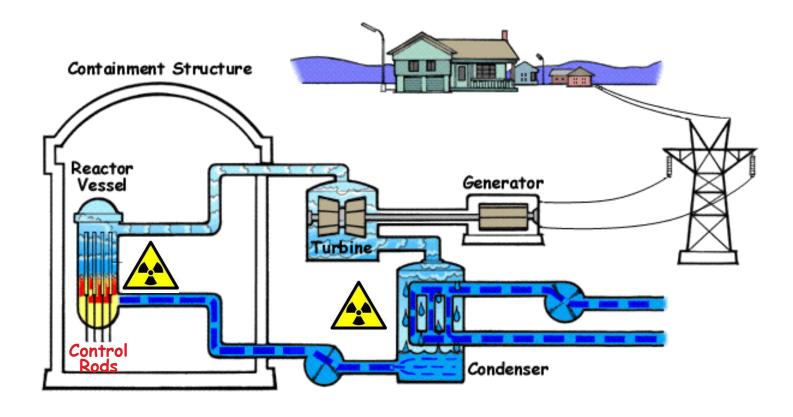

What is a Pressurized Water Reactor [PWR]?

Adapted from U.S. Nuclear Regulatory Commission (NRC), PG&E (Photo)

What is a Boiling Water Reactor [BWR]?

Adapted from U.S. Nuclear Regulatory Commission (NRC)

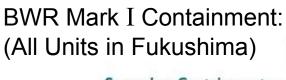
Key Advantages of Boiling Water Reactors:


(Besides generating CO₂-free electricity)

- Fewer components due to no steam generators and no pressurizer vessel (overcompensates larger reactor size due to lower enrichment)
- Operate at a substantially lower pressure (about 75 atmospheres) compared to PWR (about 158 atm) and lower fuel temperature
- Because of single major vendor (GE/Hitachi), current fleet of BWRs have predictable, uniform designs. Invaluable for first responders
- Convenient method for controlling power by simply changing pump flow
- Steam-driven Emergency Core Cooling System (ECCS) directly operated by steam produced after a reactor shutdown (but valves are controlled by battery power)

Sources: GE, Industry, Braun/Stanford Presentation (3/25/2011)

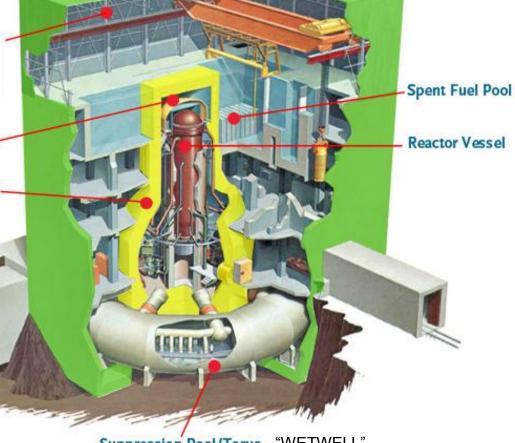
What is a Boiling Water Reactor [BWR]?


Adapted from U.S. Nuclear Regulatory Commission (NRC)

Key Disadvantages of Boiling Water Reactors:

- Single Coolant Circuit Contamination of the turbine by short-lived radiation (N₁₆)
- Requires active cooling for up to to several days following shutdown. Heat generation rate initially 6% of normal power operation, ~1% after 1 day, and ~0.5% after 5 days (enough to melt reactor core)
- Spent fuel pool exposed on top of reactor building in weak secondary containment
- No major BWR reference accident ever happened until Fukushima that could be used for "benchmarking" accident frequencies – this led to overconfidence in BWR design (as explained later)

Sources: GE, Budnitz (2010), Braun/Stanford Presentation (3/25/2011)



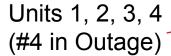
Secondary Containment:

Steel Containment Vessel

Primary Containment .

"DRYWELL"

Suppression Pool/Torus "WETWELL" (Part of Primary Containment)



Source: Adapted from Nuclear Energy Institute (NEI, updated 3/23/2011)

What Happened in Fukushima Daiichi?

On March 11, 2011: 14:46 Local Time: 9.0 Earthquake off the coast Control Rods Inserted as Planned – Shuts Down Units 1-3 [Units 4-6 not operating] Power grid in Northern Japan fails

15:41 Local Time: 14 m (40 ft) Tsunami hits. Plant designed only for 6.5 m Tsunami

Units 5 & 6 (in Outage)

Photo: Japan Land, Infrastructure, Transport and Tourism Ministry (Kyodo)

Loss of Diesel Tanks for Emergency Generators

+ Potential Flooding of the 14 Diesel Generators

Before Tsunami

After Tsunami

Source for Photos: Digital Globe (comparison by Forbes)

Timeline of Events Between March 11 and 14, 2011

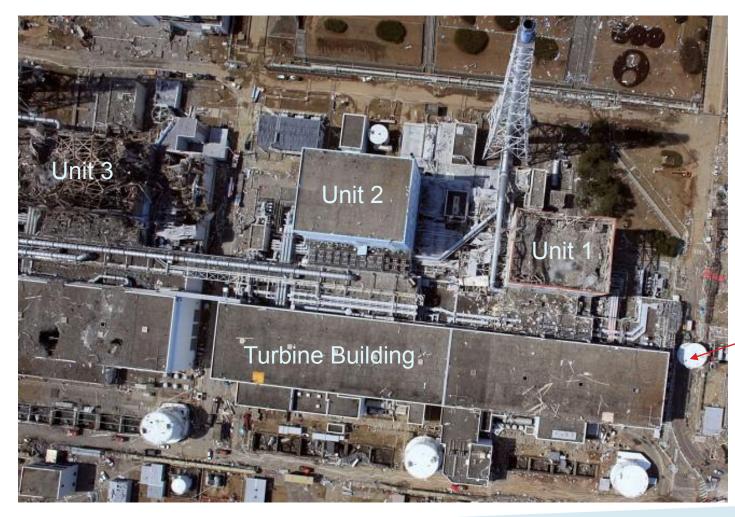
In succession, beginning in Unit 1, then 3 and then 2:

- Batteries run out / Emergency Core Cooling System (ECCS) failure
- TOTAL STATION BLACKOUT ("Beyond Design Basis Accident")
- Pressure in Reactor Vessels Rises Steam Release Valves Open
- 300 tons of water evaporate each day
- Nuclear fuel in reactors becomes uncovered and overheats
- At ~2200°F, zirconium cladding reacts with steam and generates hydrogen
- In order to prevent containment over-pressurization and failure, hydrogen/steam is vented into atmosphere – but because of design flaw (missing hardened vent) accumulates in secondary containment buildings

Source: Braun/Stanford Presentation (3/25/2011)

Hydrogen Explosions of outer Secondary Containment Buildings (Primary Containments Believed to be Undamaged at that Time)

March 12



March 14

Source: Associated Press

After March 14

Diesel Tank

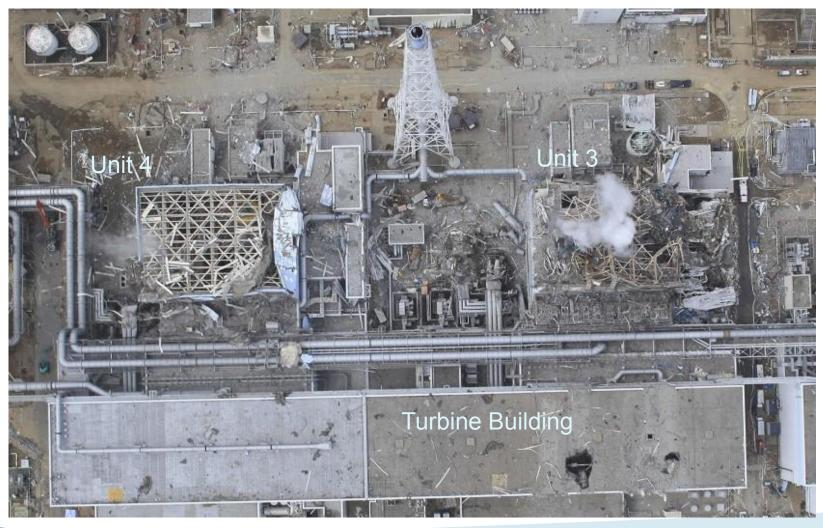
Source: Associated Press / TEPCO

March 15 Hydrogen Explosion and Fires in Secondary Containment Building of Unit 4 (reactor was completely emptied before accident)

- Spent Fuel Pool uncovered at Unit 4 (Earthquake damage?)
- Nuclear fuel in pool overheats and also generates hydrogen

After March 15,

Only remaining option was to cool the reactor cores at units 1 - 3, and the spent fuel pools at all four units:


- Seawater was pumped in with mobile equipment (irreparable damage)
- Helicopters and concrete pump dump water on spent fuel pools

Unit 2 appears to have suffered primary containment damage, radioactive decay products (cesium, iodine) and plutonium released into environment.

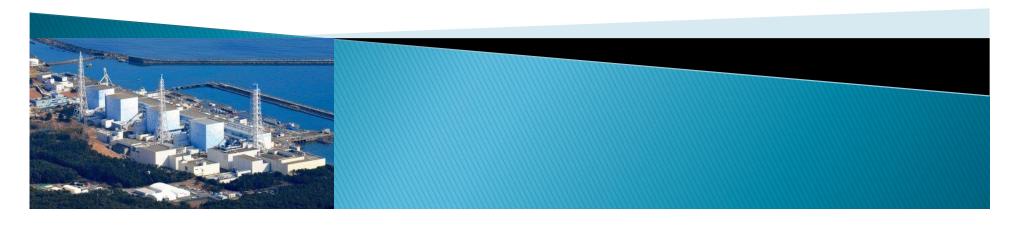
Source: JAIF, Braun/Stanford Presentation (3/25/2011)

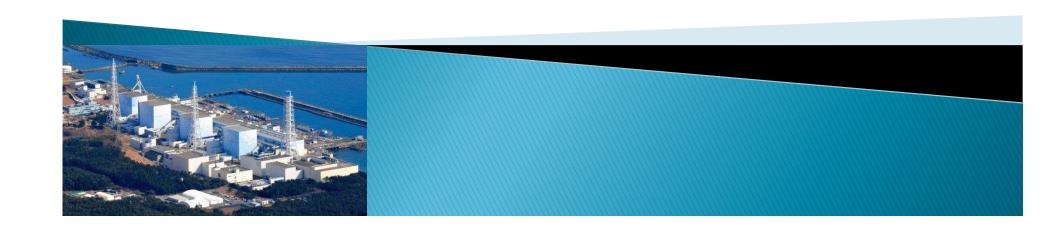
After March 15

Source: Associated Press / TEPCO

Truck-mounted concrete pump 160 m³ water /h

Source: Putzmeister / TEPCO




What Went Wrong?

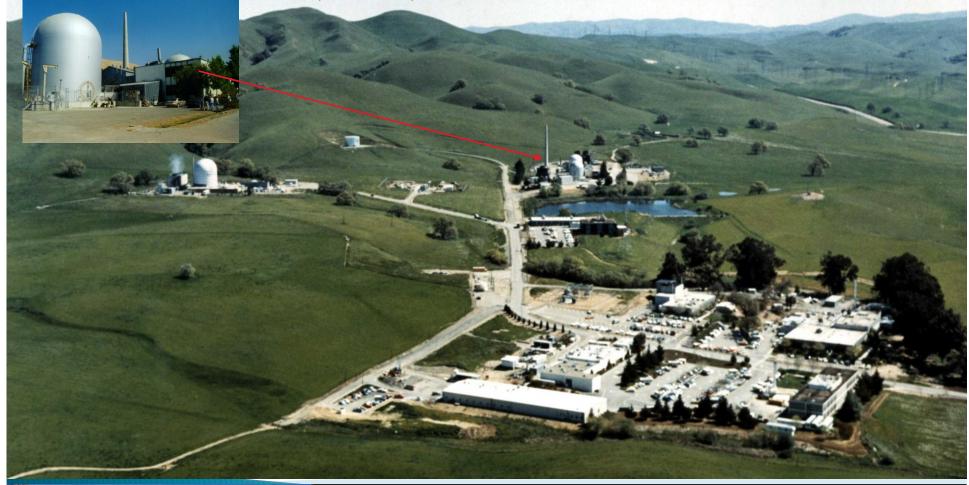
- Overconfidence in BWR design Japan's Nuclear Safety Commission did not require improvements implemented in U.S. in 1980s.
- Historical information was ignored. Japan trench produced earthquakes of magnitude 8 or higher four times in the past 400 years 1611, 1677, 1793, and 1896, often accompanied by Tsunamis
- Placement of diesel fuel tanks above ground on waterfront
- History of falsified records by plant owner Tokyo Electric Power (TEPCO)

Ultimately, Nothing can Prepare for at least some very huge Beyond Design Basis Accidents

What are implications of Fukushima for US nuclear power plants?

U.S. Commercial Nuclear Power Reactors— Years of Operation by the End of 2010

There are 23 Mark I
Boiling Water Reactors
Operating in the U.S.
(Out of 104 PWRs and
more advanced BWRs)


Years of Commercial Operation	Number of Reactors	
△ 0-9	0	
▲ 10-19	3	
▲ 20-29	48	
▲ 30–39	46	
▲ 40 plus	7	

Source: from U.S. Nuclear Regulatory Commission (NRC)

GE Boiling Water Reactor Evolution

Sources: GE, Luke Welsh (NDA Tech)

VBWR Vallecitos Boiling Water Reactor, Pleasanton, CA World's First Commercial Reactor (1957-1967): 30 MWe

GE Boiling Water Reactor Evolution

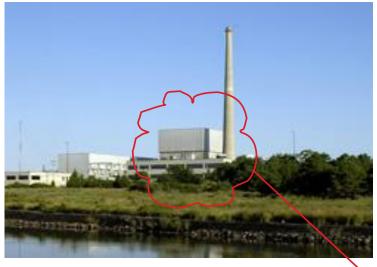
1st generation

Oyster Creek, Ocean County, NJ, Oldest U.S. Operating Power Reactor (1969): 645 MWe

2nd generation

2nd generation BWRs come in different reactor and containment building designs:

BWR/1 1960 Mark I
BWR/2 1969
BWR/3 1971 Mark II
BWR/4 1972
BWR/5 1977 Mark III
BWR/6 1978


Photo Sources: GE, Luke Welsh, Exelon

VBWR Vallecitos Boiling Water Reactor, Pleasanton, CA World's First Commercial Reactor (1957-1967): 30 MWe

GE Boiling Water Reactor Evolution

1st generation

Oyster Creek, Ocean County, NJ, Oldest U.S. Operating Power Reactor (1969): 645 MWe

2nd generation

There are 23 Mark I Boiling Water Reactors Operating in the U.S.

Mark I Containment

Fukushima 1 Units 1-6

Photo Sources: GE, Luke Welsh, Exelon

VBWR Vallecitos Boiling Water Reactor, Pleasanton, CA World's First Commercial Reactor (1957-1967): 30 MWe

GE Boiling Water Reactor Evolution

1st generation

Oyster Creek, Ocean County, NJ, Oldest U.S. Operating Power Reactor (1969): 645 MWe

2nd generation

ABWR Advanced Boiling Water Reactor: 1350 MWe (Japan, TX) ESBWR: 1600 MWe (4500 MWt)

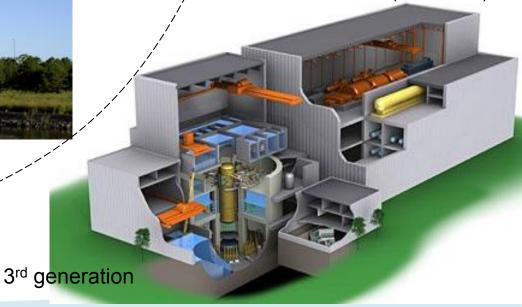
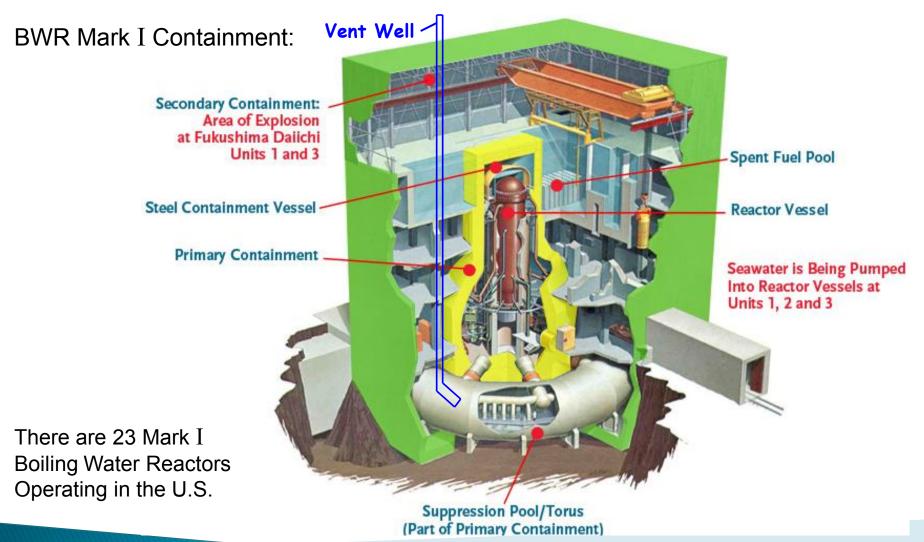


Photo Sources: GE, Luke Welsh, Exelon

BWR Mark I Containment Modifications: (e.g. \$1 billion on Oyster Creek)


In the U.S., extensive modifications of Mark I containment buildings have been performed in the last 40 years, the most important being:

- Quenchers were installed in Torus to distribute the steam bubbles
- Deflectors were installed in Torus to break up the pressure wave
- Primary Containment, Torus, and Internal Piping (especially of the Emergency Core Cooling System) were structurally fortified
- Most importantly, the NRC required 1989 that <u>all</u> Mark I containments have a <u>Hardened Wetwell Vent</u> installed (NRC Generic Letter 89-16) (like the barrel on a rifle, strong enough to withstand explosion within)

Japan's Nuclear Safety Commission rejected requirement of Hardened Wetwell Vent in 1992 – it should be left to the plant operators to decide

Sources: GE "Mark I Containment Report" (Revision 1, 3/19/2011), Reuters

Source: Adapted from Nuclear Energy Institute (NEI, updated 3/23/2011)

Additional Resources:

Japan Atomic Industrial Forum (JAIF) Daily Updated Information about Reactors http://www.jaif.or.jp/english/

Stanford Center for International Studies "The Fukushima Daiichi Incident" (Technical Slide Presentation based on Slides of Dr. Matthias Braun, AREVA NP) http://iis-db.stanford.edu/evnts/6615/March21_JapanSeminar.pdf

General Electric "The Mark I Containment System in BWR Reactors"

http://www.gereports.com/the-mark-li-containment-system-in-bwr-reactors/

EETD Seminar Presentation by Robert Budnitz, April 15, 2011

"Recent Progress in U.S. Nuclear Power Plant Safety"

http://eetd-seminars.lbl.gov/seminar/recent-progress-us-nuclear-power-plant-safety

Status of nuclear power plants in Fukushima as of 10:00, April 5th (Estimated by JAIF)

Power Station	Fukushima Dai-ichi Nuclear Power Station				
Unit	1	2	3	4	
Electric / Thermal Power output (MW)	460 / 1380	784 / 2381	784 / 2381	784 / 2381	
Type of Reactor	BWR-3	BWR-4	BWR-4	BWR-4	
Operation Status at the earthquake occurred	In Service -> Shutdown	In Service -> Shutdown	In Service -> Shutdown	Outage	
Fuel assemblies loaded in Core	400	548	548	No fuel rods	
Core and Fuel Integrity (Loaded fuel assemblies)	Damaged	Damaged	Damaged	No fuel rods	
Reactor Pressure Vessel structural integrity	Unknown	Unknown	Unknown	Not Damaged	
Containment Vessel structural integrity	Not Damaged (estimation)	Damage and Leakage Suspected	Not damaged (estimation)	Not Damaged	
Core cooling requiring AC power 1 (Large volumetric freshwater injection)	Not Functional	Not Functional	Not Functional	Not necessary	
Core cooling requiring AC power 2 (Cooling through Heat Exchangers)	Not Functional	Not Functional	Not Functional	Not necessary	
Building Integrity	Severely Damaged (Hydrogen Explosion)	Slightly Damaged	Severely Damaged (Hydrogen Explosion)	Severely Damaged (Hydrogen Explosion)	
Water Level of the Rector Pressure Vessel	Fuel exposed partially or fully	Fuel exposed partially or fully	Fuel exposed partially or fully	Safe	
Pressure / Temperature of the Reactor Pressure Vessel	Gradually increasing / Decreased a little after increasing over 400°C on Mar. 24th	Unknown / Stable	Unknown	Safe	
Containment Vessel Pressure	Decreased a little after increasing up to 0.4Mpa on Mar. 24th	Stable	Stable	Safe	
Water injection to core (Accident Management)	Continuing (Switch from seawater to freshwater)	Continuing (Switch from seawater to freshwater)	Continuing (Switch from seawater to freshwater)	Not necessary	
Water injection to Containment Vessel (AM)	(To be confirmed)	to be decided (Seawater)	(To be confirmed)	Not necessary	
Containment Venting (AM)	Temporally stopped	Temporally stopped	Temporally stopped	Not necessary	
Fuel assemblies stored in Spent Fuel Pool	292	587	514	1331	
Fuel Integrity in the spent fuel pool	Unknown	Unknown	Damage Suspected	Possibly damaged	
Cooling of the spent fuel pool	Water spray started (ffreshwater)	Continued water injection (Switch from seawater to freshwater)	Continued water spray and injection (Switch from seawater to freshwater)	Continued water spray and injection (Switch from seawater to freshwater) Hydrogen from the pool exploded on Mar. 1	
Main Control Room Habitability & Operability	Poor due to loss of AC power (Lighting working in the control room at Unit 1 and 2.)		Poor due to loss of AC power (Lighting working in the control room at Unit 3 and 4.)		
INES (estimated by NISA)	Level 5	Level 5	Level 5	Level 3	
Remarks	transfer work is being made to secure a place Function of containing radioactive materia	el by temporally installed pumps were vork to restore originally installed pum te the water to go. Lighting in the tur I	ps for injection. Discharging radioactive v bine buildings became partly available at	vater in the basement of the buildings of Unit	

Source: Japan Atomic Industrial Forum (JAIF) Updated April 5, 2011

Secondary Containment: Area of Explosion at Fukushima Daiichi [Unit 4 &] Units 1 and 3

Steel Containment Vessel -

Primary Containment .

"DRYWELL"

Spent Fuel Pool
Damage Suspected at all 4 Units

Reactor Vessel

Fuel Damage at Units 1, 2 and 3

Seawater is Being Pumped Into Reactor Vessels at Units 1, 2 and 3

Source: Adapted from Nuclear Energy Institute (NEI, updated 3/23/2011)